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Abstract
Advances in active acoustic technology have outpaced the ability to process and analyze the data in a timely

manner. Currently, scientists rely on manual scrutiny or limited automation to translate acoustic backscatter to
biologically meaningful metrics useful for fisheries and ecosystem management. The National Oceanic and
Atmospheric Administration Northeast Fisheries Science Center has monitored the Atlantic herring population
in the Gulf of Maine and Georges Bank since 1999 due to the stocks’ important economic and ecological role
for the commercial lobster industry. Manual scrutinization to identify Atlantic herring schools from the water
column sonar data is time-consuming and impractical for large-scale studies. To automate this process, a hybrid
model with multiview learning was proposed for automatic Atlantic herring school detection, which consists of
two steps: (1) region-of-interest (ROI) detection and (2) ROI classification. The ROI detection step was designed
to detect school-like objects, and the ROI classification step was designed to distinguish Atlantic herring schools
from other objects. The co-training algorithm was employed for multiview learning as well as semi-supervised
learning. Within this framework, single-view vs. multiview learning and supervised vs. semi-supervised learning
were evaluated and compared. Our results showed that multiview learning can improve the performance of the
hybrid model in Atlantic herring school detection, and the utilization of unlabeled data is also helpful when the
training set is small. The best-performed model achieved an F1-score of 0.804. This new framework provides an
efficient and effective tool for automatic Atlantic herring school detection.

To date, marine scientists rely on manual scrutiny or limited
automation to analyze acoustic data by delineating acoustic sig-
nals of species of interest. Such manual or semi-automatic
methods are time-consuming, impractical for large-scale studies,
and very difficult to reproduce without domain expertise. In
addition, manual annotations may include missing or incom-
plete data, whose quality is difficult to assess (Brautaset
et al. 2020). To address the challenge of efficiently analyzing
large, complex acoustic survey data (Wall et al. 2016), as well as
provide a complementary approach to existing annotation pro-
cesses, automatic approaches for acoustic target detection are
becoming increasingly important (Beyan and Browman 2020).

The objective of automatic acoustic target detection can be
summarized in two steps: localization and classification. The

first step localizes the region of interest (ROI) and the second
step differentiates the target from other objects. Previous stud-
ies have used Echoview (Myriax Pty, Ltd) to detect fish schools
and then classify based on a variety of school-related metrics
(Jech and Sullivan 2014; Proud et al. 2020). An ideal, fully
automated system for acoustic target detection would encom-
pass all the necessary steps in a single workflow (Malde
et al. 2020). Recent studies have explored machine learning
(Fallon et al. 2016; Korneliussen et al. 2016; Proud et al. 2020)
and deep learning (Rezvanifar et al. 2019; Brautaset
et al. 2020; Porto Marques et al. 2021) techniques to solve this
problem. In general, there are two categories of models: hybrid
and end-to-end. Hybrid models conduct object localization
and classification separately resulting in two separate modules.
For example, Rezvanifar et al. developed a two-step framework
consisting of a ROI extractor and a ROI classifier to detect her-
ring schools from acoustic data (Rezvanifar et al. 2019). End-
to-end models conduct object localization and classification in
a unified model. For example, Marques et al. applied the state-
of-the-art object detection model You Only Look Once
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(YOLO) to detect herring schools (Porto Marques et al. 2021),
where YOLO (Redmon et al. 2016) is a representative example
of end-to-end models. In hybrid models, the only trainable
part is often the ROI classifier, which is “light-weight” com-
pared with end-to-end models, and thus requires fewer sam-
ples to train. Marques et al. conducted an extensive
comparison of hybrid and end-to-end models and showed
that hybrid models can achieve comparable performance
(with a better F1-score) to end-to-end models (e.g., YOLO,
Faster R-CNN; Girshick 2015; Porto Marques et al. 2021).

In addition to model architecture, contextual features
(i.e., covariates), such as depth, geographic location, and envi-
ronmental conditions, can add useful information and
improve the effectiveness of the models. A previous study
demonstrated that adding context metadata, such as sample
depth and location, improved plankton image classification
performance (Ellen et al. 2019). To the best of our knowledge,
such contextual information has not been well utilized in
object detection models, especially for acoustic target detec-
tion. For end-to-end object detection models, the inputs are
fixed size images and acoustic echograms lose their contextual
information once transformed into images. Hybrid models are
more flexible than end-to-end models in terms of their struc-
ture because they have separate modules, which provide the
opportunity to incorporate such information.

Therefore, this study aims to develop a hybrid model with
multiview learning. Multiview learning uses multiple views to
improve model performance (Zhao et al. 2017). The method
adopted here is called co-training (Blum and Mitchell 1998), a
well-known multiview learning method that has been applied
in many different applications (Zhu et al. 2014; Li et al. 2023).
In a co-training algorithm, two classifiers are trained from two
different views that predict the data for each other, and each
view consists of a set of features. As such, the training set is
enlarged with high-confidence predictions from both classifiers.
The major advantages of using the co-training algorithm for
acoustic target classification include: (1) contextual information
such as depth in the water and geographic location can be
included as another view that is complementary to the visual
view, which are mainly visual features of acoustic targets, and
(2) a semi-supervised machine learning approach (Hastie
et al. 2009) that uses unlabeled data in the training process,
which is beneficial when only a small amount of labeled data
are available.

We use acoustic survey data as test of these methods.
Acoustic surveys are widely conducted to study underwater
species and assess their abundance. In 1999, the National Oce-
anic and Atmospheric Administration (NOAA) Northeast Fish-
eries Science Center (NEFSC) began acoustic-trawl surveys to
determine the annual biomass estimates of the Atlantic her-
ring (Clupea harengus) population in the Gulf of Maine and
Georges Bank because of the stock’s economic and ecological
importance as bait for the commercial lobster industry (Brandt
and McEvoy 2006; NOAA Northeast Fisheries Science

Center 2012, 2018; Jech and Sullivan 2014). Atlantic herring
is widely distributed in the Northwest Atlantic Ocean and is a
key prey species for many predators (Jørstad et al. 1991). They
are fall spawners who migrate from their feeding grounds to
Georges Bank to spawn every fall season (Reid et al. 1999;
Stephenson et al. 2009). To identify Atlantic herring schools
from the NEFSC surveys, Jech et al. manually outlined
regions with Atlantic herring and used Echoview to detect
Atlantic herring schools (Jech and Sullivan 2014). The sur-
veys employed a multiple frequency echosounder to collect
acoustic data from both biological and nonbiological
objects in the water column. The echosounder’s multiple
frequencies result in a spectral profile that helps scientists
identify trophic levels, and species of interest when com-
bined with the associated trawl data (Horne 2000;
Korneliussen 2018). However, extracting individual species
targets from backscatter remains challenging because
species-level information is not always available (Trenkel
and Berger 2013), and some species are difficult to distin-
guish from others with similar morphology and behavior
(Korneliussen et al. 2016).

The primary objective of this study was to develop a hybrid
model for acoustic classification of Atlantic herring schools. The
model’s framework was designed to simplify the NEFSC fisheries
acoustic expert’s original process to annotate these schools,
reduce manual effort, and provide comparable results. The model
consisted of two key steps: ROI detection and ROI classification.
The secondary objective of this study was to explore the multi-
view machine learning method for species classification, in par-
ticular, the co-training algorithm. The co-training algorithm was
implemented with different feature extraction approaches. The
effectiveness of this algorithm to identify Atlantic herring schools
was demonstrated through comparison with expert annotations.

Materials and background
Data sources

Multifrequency echosounder data collected by the NOAA
NEFSC were used in this study. The survey series from 2009 to
2022 were collected by the NOAA Ship Henry B. Bigelow during
both daytime and nighttime as part of the NEFSC’s bottom
trawl survey (Politis et al. 2014). The survey design is stratified
random where bottom trawl locations are randomly selected
within strata, which are based on bathymetry. All acoustic
data collected in-transit between trawl deployments and dur-
ing deployments were used in this analysis. Acoustic data
consisted of multifrequency Simrad EK60 echosounder nar-
rowband (i.e., continuous wave, CW) data at 18, 38, 70, 120,
and 200 kHz. The echosounders were calibrated following
standard procedures (Foote 1987) before each survey. Pulse
duration was set to 1 ms for all frequencies during operation.
See Jech et al. (2000), Jech and Stroman (2012), and Jech and
Sullivan (2014) for more details about the NEFSC acoustic
survey data. All the calibrated, multiple frequency single-
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beam data collected from 1999 to 2022 are archived at the
NOAA National Centers for Environmental Information
(NCEI) (2020) and publicly accessible through Amazon Web
Services (AWS).1

We selected acoustic survey data collected from September
25 to November 14 (39 days, 1192 echograms) in 2019 as a
representative test set (NOAA Northeast Fisheries Science
Center 2019). Because the goal of this study was to investi-
gate and evaluate methods, we opted not to apply the data
to the full time series so that we could focus on finding a suc-
cessful model. The vessel trajectories are shown in Figure 1.
Data prior to the first encounter of Atlantic herring during
each survey (i.e., the southernmost extent of the survey)
were scrutinized but not included as there were no Atlantic
herring schools present. The survey data were processed
and annotated by the NEFSC fisheries acoustics expert
(861 echograms with annotations). Echosounder raw record-
ings were post-processed as multifrequency volume backscat-
ter (Sv data) using an open-source Python library called
PyEcholab.2 The echograms are 2454 (time dimension) �
2613 (depth dimension) in pixels. All echograms were
preprocessed by aligning pings in the time/distance domain
across the four frequency components. The seabed detected
by the EK60 echosounder software and documented in .bot
files were used to remove data under the seafloor. To mini-
mize the effect of surface bubbles and erroneous seafloor
detection, data shallower than 10 m or data deeper than 1 m
above the seafloor were excluded. To smooth and diminish
stochastic local variation, a 3 � 3 median filter was applied
to each frequency component.

Human annotations
Annotation process
The workflow used by the NEFSC fisheries acoustics expert

to extract Atlantic herring schools (in this paper, we define
“school” as any aggregation of Atlantic herring including
schools and shoals) from the NEFSC acoustic survey data con-
sisted of five steps: (i) Bottom detection and error correction: in
this step, an automated seabed detection algorithm was
applied using Echoview. The results were then manually qual-
ity controlled to remove erroneously labeled seabed echos.
This is an important step as the inclusion of seabed echoes is
the largest source of error in abundance estimates. (ii) Manual
nonbiological object outlining: while scrutinizing the seabed
detection, scattering features that were not of biological
origin, for example, echoes from conductivity–temperature–
depth (CTD) recorders deployed during survey, surface
bubbles, and noise artifacts, were identified and labeled
(Fig. 2). (iii) Acoustic classification: based on the multifrequency
single-beam imaging method (Jech and Michaels 2006; Wall
et al. 2016), only the scattering that was indicative of gas-

bearing targets was retained since herring was a subset of
those targets. (iv) Manual target outlining and masking: This step
located the target regions by manually drawing polygon
regions circumscribing backscatter that were believed to be
due to Atlantic herring. The outlined regions were rather crude
and could incorporate scatter from sources outside of Atlantic
herring. (v) Fish school detection: as the final step, the outlined
regions were used to mask the original data, and only regions
with Atlantic herring were retained. Echoview’s “Schools
Detection Module” was applied to the retained regions using
the 38-kHz data to more precisely detect Atlantic herring
schools. The 38-kHz data were selected because this frequency
is used to generate abundance estimates for Atlantic herring
assessments. School detection was performed using Shoal
Analysis and Patch Estimation System (SHAPES) (Barange 1994;
Coetzee 2000), which requires a number of parameters to be
set. The goal of this step was to group all the contiguous bins
and remove all the speckles. The minimum total school height
and length were all set to 4 m, the minimum candidate length
was set to 1 m, and the minimum candidate height was set to
2 m. The minimum vertical linking distance was set to 2 m,
and the maximum horizontal linking distance was set to 20 m
(Jech and Stroman 2012). More details about Echoview’s school
detection module can be found here.3 Essentially, each step fur-
ther eliminates backscatter that is not associated with Atlantic
herring schools based on empirical knowledge (Jech and
Sullivan 2014).

Based on this annotation process, four classes of annota-
tions were created: positive target “Atlantic herring school”,
and negative nontarget “Clupeid school,” “Krill,” and “Noise
region” (Table 1). Figure 2 provides examples of annotations.

Fig. 1. The NOAA Ship Henry B. Bigelow acoustic-trawl survey track in
2019 overlaid on the ETOPO1 1 Arc-Minute Global Relief Model (NOAA
National Geophysical Data Center 2009). Orange denotes the survey data
processed and annotated by the NEFSC fisheries acoustics expert.

1https://registry.opendata.aws/ncei-wcsd-archive/
2https://github.com/CI-CMG/pyEcholab

3https://support.echoview.com/WebHelp/Reference/Algorithms/Schools_
Detection_Module/Notes_about_schools_detection.htm
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All the school annotations were generated by Echoview’s
school detection algorithm. “Atlantic herring school” denotes
a school with scattering features of Atlantic herring, which is
the target class. “Clupeid school” were generated within
regions that were outlined as possible herring, which denotes
scattering features associated with Clupeid-type fish, such
as alewife (Alosa pseudoharengus), blueback herring (Alosa
aestivalis), shad (Alosa sapidissima), or menhaden (Brevoortia
tyrannus). “Krill” denotes scattering features associated with
krill (Euphausia sp.) that were identified using methods
described by Jech et al. (2018). “Noise region” denotes regions
of noise, such as CTD rosette echoes and surface bubbles from
inclement weather (Shabangu et al. 2014). The annotations
were used to assign labels to the ROIs as described in “ROI
Labels” section and evaluate the model performance as
described in “Evaluation” section.

Annotation characteristics
As shown in Figure 2, Sv classified as “Atlantic herring

school” had similar acoustic intensity as “Clupeid school” and
“Noise region” at 38 kHz, whereas “Krill” had a much weaker
acoustic intensity than the other classes. Some annotations of
Clupeid schools were acoustically similar to Atlantic herring
but exhibited different depth preferences. Table 1 presents the
total number and basic characteristics (e.g., depth, size) of
each class. Clupeid schools were mostly abundant in shallow
water (depth around 29 m) while Atlantic herring schools

were most abundant in deeper water (depth around 117 m).
Noise regions had the shallowest median depth of 14 m.
Besides differences in depth distribution, Clupeid schools and
krill tended to form smaller aggregations than Atlantic herring
schools since their median sizes were smaller. It is also worth
noting that Clupeid school, krill, and noise regions only form
a subset of all the negative (i.e., nontarget) classes. It is impor-
tant to have an effective classifier that can differentiate Atlan-
tic herring schools from all possible negative classes.

Among Atlantic herring school annotations, there were also
variations in terms of their acoustic, geometric, and geo-
graphic characteristics. Figure 3 shows the multifrequency
responses and aspect ratio (ratio of fish school’s length to
thickness) of Atlantic herring schools at different depth
ranges. In addition, their frequency responses changed with
depth. In shallower water, they tended to have stronger
responses at lower frequencies (18 and 38 kHz) than higher
frequencies (120 and 200 kHz); while in deeper water, this
trend gradually reversed. For example, at depth range of 200–
250 m, Atlantic herring schools had stronger responses at
higher frequencies (120 and 200 kHz) than lower frequencies
(18 and 38 kHz). At the same time, as depth increased, the
aspect ratio of Atlantic herring school increased, which indi-
cates that schools near the seafloor extended for longer dis-
tances than those near the surface. The high variability of
aspect ratio (from 0 to 60) also posed some challenge to the
detection of Atlantic herring schools since the targets’ shape

Fig. 2. Examples of annotations, which depict 38 kHz Sv values with a color scale of �66 to 0 dB re 1 m�1 (from gray to blue to green). Sv values less
than �66 dB re 1 m�1 have been excluded and shown as the white background. Noise regions show the echoes from bubbles at the sea surface (top
panel) and a CTD rosette (lower panel).

Table 1. Summary of annotations generated from the NEFSC for 2019 herring survey.

Category Class name #Annotations Median depth (m) Median size (m2)

Positive (target) Atlantic herring school 2140 117 318

Negative (nontarget) Clupeid school 694 29 172

Krill 89,470 70 136

Noise region 159 14 665
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can change significantly. The differences in frequency
responses and aspect ratios together demonstrate the depth-
dependent characteristics of Atlantic herring schools.

Framework and evaluation
In this study, the hybrid model for Atlantic herring school

detection consisted of two key steps: (i) ROI detection and
(ii) ROI classification. The first step detects ROIs that are
likely to be Atlantic herring schools while the second step
distinguishes Atlantic herring schools from other classes.
Figure 4 provides a graphical comparison of the original
annotation process and the hybrid model with the outputs
of each step.

Our new framework implemented entirely in Python sub-
stantially reduces the number of steps and manual effort.

ROI detection
Contour detection was employed to detect ROIs (Suzuki

and be 1985). Contours are curves that join continuous

points along the boundary with the similar color or inten-
sity. Contour detection serves as the basis of object detec-
tion (Arbelaez et al. 2010) and is well suited to detect fish
school-like objects. The findContours function from
Python’s OpenCV library was used for ROI detection. By
applying the same minimum length and thickness con-
straints as described in “Human Annotations” section, very
tiny ROIs were excluded.

This method is nonparametric. The only parameter that
impacts ROI detection is the minimum Sv value, which is set
to exclude backscatter that is not related to the target. The
threshold of �66 dB re 1 m�1 has been previously applied to
detect Atlantic herring (Jech and Sullivan 2014). In many pre-
vious studies (Brautaset et al. 2020; Choi et al. 2021), this
threshold was empirically set given the target species. In
this study, instead of setting it empirically, varying values of
the Sv threshold were applied for ROI detection, ranging from
�80 to �54 dB re 1 m�1 with an interval of 2 dB re 1 m�1. The
optimal Sv threshold for these data was chosen to optimize

Fig. 3. Depth-dependent characteristics of Atlantic herring schools: (a) multifrequency Sv values and (b) aspect ratio (the ratio of school’s length to
thickness) at different depth ranges.

Fig. 4. Comparison of the original, human-in-the-loop annotation process (left) and the hybrid model (center) for Atlantic herring school detection.
Examples of unlabeled acoustic data (top right), ROI detection result (middle right), and ROI classification results (bottom right) are shown in the right
panel.
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the model performance (see “ROI Detection: Sv Threshold”
section for detailed results).

ROI classification
The detected ROIs include Atlantic herring schools as well

as other objects like Clupeid schools, noise, and seabed ech-
oes. In this step, binary classifiers were trained to distinguish
Atlantic herring schools from other objects. The co-training
algorithm was employed to enable multiview learning for ROI
classification and incorporate contextual information.

ROI labels
ROI labels were acquired by overlapping the detected ROIs

with human annotations. ROIs that had a significant overlap
with annotations got their labels from annotations. Their over-
lap was measured by the intersection-over-union (IoU) metric
(ranging from 0 to 1) that is widely used to measure the perfor-
mance of object detection methods (see the graphical demon-
stration in Figure 7, in which the “target” is the union of two
objects). A high IoU value indicates a good overlap between an
ROI and an annotation. The IoU threshold was set to 0.5, indi-
cating that the ROI and annotation must overlap by at least
50% in order to get labeled. The ROIs that did not satisfy this
condition would remain unlabeled. Given the available annota-
tions, there were four possible labels for the detected ROIs,
including “Atlantic herring school,” “Clupeid school,” “Krill,”
and “Noise region.” The sum of these four regions did not
account for the total Sv of the full echogram since (1) Sv that
was below the threshold were not included and (2) there were
other nontarget objects beyond the annotated ones.

Training, validation, and test
The acoustic survey data were divided into training, valida-

tion, and test sets by a random 60–20–20 split of the 1192
echograms (as shown in Table 2). The training set was used to
detect ROIs and train ROI classification models at different Sv
thresholds. The validation set was used to evaluate the models’
performance with different hyperparameter settings. In this
framework, the Sv threshold was also included as a hyper-
parameter, and its optimal value was selected by the validation
set. The test set was used to report the final performance of the
whole framework after completing the training process. By

overlapping with annotations, ROIs were divided into three
groups: labeled positive, labeled negative, and unlabeled negative.
Labeled positive ROIs were labeled as Atlantic herring school and
corresponded to annotated Atlantic herring schools. Labeled neg-
ative ROIs were labeled as the nontarget classes Clupeid school,
Krill, or Noise region and corresponded to annotations of those
types. Unlabeled negative ROIs were those without any labels and
came from echograms without annotations of any type.

The reason to include unlabeled negative ROIs is that when
human experts labeled samples, they focused more on the
positive samples (Atlantic herring school) and less on the neg-
ative samples, so they may have only labeled a few negative
classes. However, more negative classes beyond the classes
labeled may exist in the data, therefore, labeled negative and
unlabeled negative ROIs were combined into all negative ROIs to
provide a comprehensive picture of the negative samples.
Table 2 reports the number of ROIs in each category when
applying the Sv threshold of �66 dB re 1 m�1. It is important
to mention that the dataset exhibits class imbalance, with a
ratio of positive to negative examples being 1 : 22 in the train-
ing set. The optimal ratio of negative to positive samples was
chosen by optimizing the overall performance on the valida-
tion set (see “ROI Classification: Ratio of Negative to Positive
Samples” section for detailed results).

Multiview learning algorithm
Co-training was employed for multiview learning, which

incorporates two complementary views for ROI classification.
As shown in Figure 5, different categories of features created
two views: View 1 with school-related features, and View 2 with
contextual features. Each view can be individually trained to
discriminate Atlantic herring schools from other categories.
View 1 was trained with features directly related to fish or krill
schools, such as their acoustic and geometric characteristics.
There are typically two approaches to generate school-related
features: one is via feature engineering (also called handcrafted
[HC] features), and the other is via the convolutional neural
networks (CNN) model. View 2 was trained with contextual
features such as depth and location that quantify the geo-
graphic location of the fish or krill schools. One assumption of
co-training is that these views are conditionally independent.
However, in practice that criterion is usually not met

Table 2. Summary of the training, validation, and test datasets used in the models. The number of echograms (#Echograms), number
of echograms with annotations (#Annotated echograms), number of ROIs labeled with Atlantic herring schools (#Labeled positive ROIs),
number of ROIs labeled with nontarget classes such as Clupeid school, Krill, or Noise region (#Labeled negative ROIs), and the number
of labeled negative and unlabeled negative ROIs (#All negative ROIs) are listed for the training, validation, and test sets. The number of
positive, labeled negative, all negative ROIs are computed using Sv threshold at �66 dB re 1 m�1. With different Sv settings, these num-
bers change accordingly.

Split #Echograms #Annotated echograms #Labeled positive ROIs #Labeled negative ROIs #All negative ROIs

Training 715 435 715 260 15,948

Validation 239 149 193 114 5873

Test 238 143 215 45 5188
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(Zheng 2015). As shown in “Annotation Characteristics” sec-
tion, for Atlantic herring schools, their depths were related to
the school characteristics, frequency responses, and aspect
ratio. Based on our multiview experimental results shown in
“Multiview-Based Model Performance” section, ROI classifica-
tion performance was not degraded by this relationship.

Figure 5 and Algorithm 1 illustrate the process of co-training.
In addition to labeled data L and unlabeled data U, a training pool
U0 was created by randomly choosing u0 samples from U. During
each iteration, Classifiers 1 and 2 were trained using L and then
used to label m samples from U0 with high confidence
(m included p-positive and n-negative samples, which strictly
followed the original ratio of positive to negative labels). With
each iteration, 2-m samples were labeled. Once the samples in U0

were labeled as either positive or negative, they were removed
from U0 and added into L. This process was conducted in an itera-
tive manner until the stopping criteria, namely no unlabeled data
were left or the maximum number of iterations (K in Algorithm
1) was reached. Therefore, K can be used to control the size of
unlabeled data. When K = 1, C1 and C2 were trained only using
labeled data L. The co-training algorithm was implemented with
the default parameters used in the original paper (Blum and
Mitchell 1998). When using the co-training model for inference,
a label was assigned either when the two classifiers agreed with
each other or by the classifier with higher confidence.

Multiview learning features
Depending on the approach to generate school-related fea-

tures, there were two options for Classifier 1 as shown in
Figure 5: (1) train a shallow machine learning model using the
HC features and (2) train a CNN classifier. For each option,
the machine learning and CNN model with the best perfor-
mance were selected to be used in the co-training algorithm.
For Classifier 2, machine learning models were trained using
contextual features.

HC features: As shown in Table 3, a wide variety of acoustic
and geometric features were extracted from the ROIs. Acoustic
features include minimum, maximum, percentiles (5%, 25%,

50%, 75%, 95%), and standard deviation of each frequency com-
ponent’s Sv values, and the Sv values at 18, 120, and 200 kHz
relative to 38 kHz. Geometric parameters that have been previ-
ously used in acoustic target classification (Haralabous and
Georgakarakos 1996; Reid 2000; Korneliussen et al. 2009) were
also computed, including length, thickness, perimeter, area, cir-
cularity, image compactness, elongation, and rectangularity. The
basic unit of length and thickness (as illustrated in Fig. 7) was
meters rather than pixels, which takes into account varying ves-
sel speeds and provides a more accurate geometric characteriza-
tion of the fish or krill schools. The HC features presented in
Table 3 cover a comprehensive set of school-related features.
Using these features, three different machine learning models
(random forest [RF], support vector machine [SVM], and logistic
regression [LR]) were trained to conduct ROI classification.

CNN features: To prepare inputs for the CNN models, all
the ROIs were first converted into 4-channel images
corresponding to the 4 frequencies: 18, 38, 120, and 200 kHz
by cropping the bounding boxes of ROIs from echograms and
resizing them to 100 � 100. It is worth noting that this pro-
cess can cause object distortion, but transforming into fix-
sized images is a requirement of the CNN models. The Sv
values were scaled to the range of 0–255. Figure 6 shows the
ResNet18 architecture for ROI classification. ResNet
(He et al. 2016) leverages a novel architecture called “skip con-
nection” that helps to alleviate the problem of gradient
vanishing and has achieved state-of-the-art accuracy in many
tasks. In addition to ResNet18, two other CNN architectures
were explored: VGG16 (Simonyan and Zisserman 2014) and
MobileNet v2 (Howard et al. 2017). VGG16 consists of 16 con-
volutional layers and has a uniform architecture, compared to
ResNet18, which has more parameters and higher complexity.
MobileNet v2 makes use of depth-wise separable convolutions,
which significantly reduces the number of parameters.

Compared with ResNet18, MobileNet v2 is lighter and
faster. For model training, batch size was set to 128, Adam
optimizer was used with a learning rate of 0.001, and each
model was trained for 100 epochs using the Cross-Entropy

Fig. 5. Multiview co-training algorithm for ROI classification. A training pool (U0) is randomly selected from the unlabeled data (U). Classifier 1 is then
trained on labeled data (L) and any newly labeled data (L10) using school features. Classifier 2 is trained on labeled data (L) and newly labeled data (L20)
using contextual features. Subsets of unlabeled data are fed back into the U0 pool.
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loss. The models were implemented with PyTorch4 and
Skorch,5 and trained on a NVIDIA GeForce GTX 1080 GPU.

Contextual features: Contextual features were extracted
from information describing the vertical and horizontal geo-
location of ROIs. There are five different features for each ROI:
depth, total water column, relative altitude (ratio of depth to
total water column), latitude, and longitude. These features
were used in the RF, SVM, and LR machine learning models
trained to conduct ROI classification.

Evaluation
The whole framework was evaluated using the test set. The

hybrid model was designed to capture as many Atlantic her-
ring schools as possible and be able to discriminate Atlantic
herring schools from other classes of objects. Therefore, recall,
precision, and F1-score were used to evaluate its overall perfor-
mance (Davis and Goadrich 2006). These metrics have been
widely used to evaluate the performance of classification
models (Goutte and Gaussier 2005).

Fig. 6. ResNet18 architecture.

Table 3. Detailed descriptions of the HC features. “*” can be replaced by different statistics listed in the description column, for exam-
ple, Sv 38 kHz min. “std” denotes standard deviation.

Category Feature Unit Description

Acoustic Sv_18kHz_* dB re 1 m�1 Min, max, percentiles, std

Sv_38kHz_* dB re 1 m�1 Min, max, percentiles, std

Sv_120kHz_* dB re 1 m�1 Min, max, percentiles, std

Sv_200kHz_* dB re 1 m�1 Min, max, percentiles, std

Sv_relative_* Sv at 18, 120, and 200 kHz relative to 38 kHz

Geometric Length m Length of the bounding box

Thickness m Width of the bounding box

Perimeter m Perimeter of the fish school

Area m2 Area of the fish school

Circularity 4*π*area/perimeter2

Image compactness m�1 Perimeter/area

Elongation Length/thickness

Rectangularity (Length � thickness)/area

Fig. 7. Illustration of how the overlap ratio is calculated for the ROI and
annotation or “target.” School length and thickness described in Table 3
are annotated as well.

4https://github.com/pytorch/pytorch
5https://github.com/skorch-dev/skorch
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Recall was used to evaluate the effectiveness of the frame-
work in detecting Atlantic herring schools. It was computed as
the fraction of annotations of Atlantic herring schools that
were successfully captured by the framework to the number of
true positives and number of false negatives. In other words, it
is the ratio of the number of correctly classified Atlantic her-
ring schools to the summation of the number of correctly clas-
sified Atlantic herring schools and the number of Atlantic
herring schools incorrectly classified as something else.

Recall¼ True Positive
True PositiveþFalse Negative

ð1Þ

Recall ranges from 0 to 1, and a higher value indicates that
more Atlantic herring schools are correctly identified by the
framework. Recall accounts for the number of non-Atlantic
herring schools that were falsely classified as Atlantic herring
(a Type II error), is analogous to statistical accuracy where
higher values indicate better classification of the “true” Atlan-
tic herring schools and can be a better evaluation metric for
unbalanced distribution of classes. Recall is sensitive to false
negatives and is useful if the “cost,” for example, error in
abundance estimates, of not correctly classifying Atlantic her-
ring is significant. In our case, recall is quite important to esti-
mating accurate abundance.

To claim a successful capture, there must be a significant
portion of the annotation being covered. As shown in
Figure 7, by overlapping ROIs that were predicted as Atlantic
herring schools with annotations of Atlantic herring schools,
an overlap ratio was computed for each pair. Here the “target”
is the annotation. When the minimum overlap ratio is set to
0.5, it means that there must be at least 50% of the annota-
tion being covered by the ROI. Varying minimum overlap
ratios (0.3, 0.5) were experimented with, and higher ratio

requires a larger overlap with annotations. Recall is analogous
to the statistical term of accuracy, where recall is how well the
algorithm selected the correct (i.e., “true”) label. In this case,
the annotations were assumed to be the “truth.”

Precision was used to evaluate the effectiveness of the
model at classifying Atlantic herring schools. Precision is
the ratio of true positives to the summation of true and false
positives (Type I errors). In other words, it is the ratio of the
number of correctly classified Atlantic herring schools to the
number of correctly classified Atlantic herring schools and
the number of falsely classified schools as Atlantic herring.

Precision¼ True Positive
True PositiveþFalse Positive

ð2Þ

Precision ranges from 0 to 1, where a higher value indicates
the model is better at classifying Atlantic herring schools. Pre-
cision is sensitive to false positives and is a useful metric if the
“cost,” for example, error in abundance estimates, is highly
dependent on whether non-Atlantic herring backscatter was
classified as Atlantic herring. For example, classifying other
Clupeid species as Atlantic herring could result in significantly
biased abundance estimates when their abundance is high.

F1-score is the weighted average of recall and precision,
which ranges from 0 to 1 and was computed as follows:

F1-score¼ 2

precision�1þ recall�1
ð3Þ

The F1-score is a balance of precision and recall and can be
interpreted as the harmonic mean of precision and recall. It is
a useful metric when information about false positives and
negatives are important to understand. In the case of estimat-
ing abundance for a target species, recall is potentially more

Algorithm 1. Co-training algorithm for ROI classification
Input: L—a set of labeled samples, U—a set of unlabeled samples

1: function co-training (L, U)
2: Create a pool U0 by randomly choosing u0 samples from U
3: k 0
4: while U is not empty and k < K do ▷ K: maximum iteration
5: Train C1 using L ▷ C1: ROI Classifier 1
6: Option 1: train machine learning model with handcrafted features
7: Option 2: train convolutional neural networks
8: Train C2 using L ▷ C2: ROI Classifier 2
9: Let C1 label m samples from U0 with most confident predictions ▷ m: p positive and n negative samples

10: Let C2 label m samples from U0 with most confident predictions
11: Remove 2 m samples from U0 and add them into L
12: Randomly choose 2 m samples from U to replenish U0

13: k k + 1
14: end while
15: end function
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informative for evaluating the effectiveness of the models
than precision, except in the case where confounding species
are abundant, and the F1-score is a good general criterion.

Results
The performance of the proposed framework under different

settings is presented in four parts. First, the hybrid model with
single-view and multiview learning was tested and compared to
evaluate the effectiveness of multiview learning. Second, super-
vised and semi-supervised models were tested and compared to
evaluate the effectiveness of leveraging unlabeled data. Third, a
parameter study was conducted to examine the impact of
parameters on the model performance, such as Sv threshold
and ratio of negative to positive samples. Fourth, example
results of the proposed framework to identify Atlantic herring
schools from other objects in acoustic data are provided.

Single-view vs. multiview learning
The ROI classification can be conducted either with single-

view (only one feature set) or multiview learning. To perform
a fair comparison between single-view- and multiview-based
models, unlabeled data were not used at this stage. This
approach separates the effect of multiview learning and
unlabeled data. By setting iteration number K as 1, Classifiers
1 and 2 (C1 and C2) as described in Figure 5 were trained only
on the labeled data. In “Supervised vs. Semi-supervised Learn-
ing” section, separate experiments were conducted to evaluate
the effectiveness of unlabeled data.

Single-view-based model performance
Tables 4 and 5 provide the recall, precision, and F1-scores of

single-view-based models at minimum overlap ratio of 0.3 and
0.5, respectively. With a minimum overlap ratio of 0.5, the
recall and F1-scores of all models decreased. When testing on
positive and labeled negative samples, C2 with contextual features
achieved the best performance with an F1-score of 0.850 and
0.889 at minimum overlap ratio of 0.5 and 0.3, respectively.

The finding that inclusion of contextual features is the
most effective aligns with the observation that school depth is
an important feature for separating Atlantic herring from
other Clupeid species. However, the results are different when
testing on positive and all negative samples. In this scenario, C2
with contextual features had the lowest F1-score of 0.445 and
0.460, and C1 with HC features achieved the best performance
with an F1-score of 0.666 and 0.707. All negative samples
included negative samples outside the labeled nontarget clas-
ses, and the results here indicate that using only contextual
features is not sufficient to differentiate Atlantic herring
schools from all other nontarget classes. Also, when switching
from labeled negatives to all negatives, all models showed some
decrease in precision and F1-score. C1 with CNN features and
C2 with contextual features had a larger performance drop
than C1 with HC features, which demonstrated that the HC
features are more robust when applying to more diverse cases.
For models using the same feature set, RF achieved the best
performance with HC features and with contextual features
while ResNet18 achieved the best performance among CNN
models. These best-performing methods were used in the fol-
lowing multiview learning experiments.

Another finding from Tables 4 and 5 is that C1 with HC
features outperformed C1 with CNN features. There are several
reasons for this: (i) the size of labeled data is relatively small,
as shown in Table 2, and the number of positive samples for
training is less than 1,000. A previous study similarly showed
that when the size of labeled data is small, the HC features
outperformed CNN features (Lin et al. 2020). (ii) When trans-
forming acoustic data into fixed size images, the objects may
be distorted and cause performance degradation in the CNN
models. Distortion is a natural problem in acoustic data due to
the impact of varying vessel speed, differences in scale where
the vertical extent is much larger than the horizontal extent,
and the difficulty keeping accurate geometric information
with only the pixel-based image. Figure 8 shows the top
20 important features of the RF using HC features. The most
important features are thickness and compact (both are

Table 4. Performance of single-view-based models using HC, CNN, or contextual features with a minimum overlap ratio of 0.3.

Positives and labeled negatives Positives and all negatives

Classifier Model Recall Precision F1-score Recall Precision F1-score

C1 (HC) RF 0.671 0.892 0.766 0.671 0.746 0.707

SVM 0.597 0.870 0.708 0.597 0.596 0.596

LR 0.326 0.824 0.467 0.326 0.479 0.388

C1 (CNN) ResNet 0.637 0.842 0.725 0.637 0.546 0.588

MobileNet 0.573 0.814 0.672 0.573 0.476 0.520

VGG 0.573 0.802 0.668 0.573 0.429 0.490

C2 (contextual) RF 0.803 0.947 0.869 0.803 0.322 0.460

SVM 0.824 0.965 0.889 0.824 0.264 0.400

LR 0.318 0.778 0.452 0.318 0.172 0.223
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geometric features), which demonstrate the importance of
accurate geometric features for ROI classification.

Multiview-based model performance
Tables 6 and 7 provide the recall, precision, and F1-score

of multiview-based models at minimum overlap ratios of 0.3
and 0.5, respectively. When testing on positives and labeled
negatives, co-training models performed worse than C2 only
but better than C1 only. The results indicated that multiview
learning was not beneficial in differentiating Atlantic herring
schools from the labeled nontarget classes. It is likely that C2
already has sufficient discriminating ability and combining it
with C1 may degrade its performance. For this scenario,
using C2 with contextual features was better. When testing
on positives and all negatives, the results were different. By
combining C1 with HC features and C2 with contextual

features, co-training models outperformed C1 and C2 only
and achieved an F1-score of 0.758 and 0.804 at minimum
overlap ratios of 0.5 and 0.3, respectively. The results indi-
cated that multiview learning was beneficial in differentiat-
ing Atlantic herring schools from all other nontarget classes.
However, this was not true when combining C1 with CNN
features and C2 with contextual features, that is, the co-
training models performed better than C2 only but worse
than C1 only. An important assumption behind the co-
training algorithm was that the two views/classifiers were
providing complementary information to each other. The
results showed HC and contextual features did benefit each
other, while CNN and contextual features did not. In addi-
tion, co-training models using HC features outperformed the
ones using CNN features, which is also consistent with
single-view model results.

Table 5. Performance of single-view-based models using HC, CNN, or contextual features with a minimum overlap ratio of 0.5.

Positives and labeled negatives Positives and all negatives

Classifier Model Recall Precision F1-score Recall Precision F1-score

C1 (HC) RF 0.601 0.892 0.718 0.601 0.746 0.666

SVM 0.541 0.870 0.668 0.541 0.596 0.567

LR 0.275 0.824 0.413 0.275 0.479 0.350

C1 (CNN) ResNet 0.563 0.842 0.675 0.563 0.546 0.554

MobileNet 0.515 0.814 0.631 0.515 0.476 0.495

VGG 0.510 0.802 0.624 0.510 0.429 0.466

C2 (contextual) RF 0.717 0.947 0.816 0.717 0.322 0.445

SVM 0.760 0.965 0.850 0.760 0.264 0.392

LR 0.285 0.778 0.417 0.285 0.172 0.215

Fig. 8. Top 20 important features of the RF model with HC features. Thickness, compact, and area are geometric features while the remaining variables
derive from the acoustic data. See Table 3 for further details on the feature descriptions. Mean decrease in impurity (MDI) is an impurity-based feature
importance.
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Supervised vs. semi-supervised learning
Besides multiview learning, another important advantage

of the co-training algorithm was its utilization of unlabeled
data. To perform a fair comparison between supervised and
semi-supervised methods, co-training models with and with-
out unlabeled data were tested and compared. Both models
used C1 with HC features and C2 with contextual features. For
the co-training models with unlabeled data, maximum itera-
tion K was set to 15, which corresponded to 210 unlabeled
data since the positive: negative ratio was set to 1:6 (a detailed
study on the optimal positive: negative ratio is provided in
“ROI Classification: Ratio of Negative to Positive Samples”
section).

As shown in Figure 9, the co-training models were trained
using a varying number of labeled data. The number of posi-
tive data started from 17, with an increment step of 7, up to
357 (about 50% of the positive data shown in Table 2). When
the number of positive data was below 100, the co-training
model with unlabeled data consistently outperformed the
model without unlabeled data, which demonstrated the effec-
tiveness of utilizing unlabeled data when the training set was

small. However, when the number of positive data increased
to 100 or larger, there was no advantage and the co-training
model with unlabeled data achieved F1-Scores comparable to
the model without unlabeled data. These results indicated that
the utilization of unlabeled data is useful when the training
set was small.

Parameter study
The parameter study was conducted on the validation set.

Key parameters like Sv threshold and ratio of negative to posi-
tive samples were selected to study their impact on model per-
formance. The minimum overlap ratio was set to 0.3.

ROI detection: Sv threshold
Figure 10 provides the ROI detection and classification

results at varying Sv thresholds. For ROI detection, the recall
at �68 to �66 dB re 1 m�1 is nearly 1.0, which indicated that
this Sv threshold detected almost all the Atlantic herring
schools that were annotated. This range is also well aligned
with the empirical value of �66 dB re 1 m�1. For ROI classifi-
cation, the highest recall and F1-score values were achieved at

Table 7. Performance of multiview-based models with a minimum overlap ratio of 0.5.

Positives and labeled negatives Positives and all negatives

Classifier Recall Precision F1-score Recall Precision F1-score

Co-training (HC) 0.705 0.964 0.814 0.705 0.819 0.758
Co-training (CNN) 0.589 0.917 0.718 0.589 0.380 0.462

Fig. 9. Performance of supervised (blue line) and semi-supervised learning (red dashed line) with a minimum overlap ratio of 0.3.

Table 6. Performance of multiview-based models with a minimum overlap ratio of 0.3.

Positives and labeled negatives Positives and all negatives

Classifier Recall Precision F1-score Recall Precision F1-score

Co-training (HC) 0.788 0.964 0.868 0.788 0.819 0.804

Co-training (CNN) 0.654 0.917 0.764 0.654 0.380 0.481
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�66 dB re 1 m�1, which was similar to the optimal Sv thresh-
old in the ROI detection. Additionally, the precision increased
significantly after the ROI classification step, which suggested
that the classification step was essential in discriminating
Atlantic herring schools from other classes. Given the results,
the optimal Sv threshold was selected as �66 dB re 1 m�1.

ROI classification: Ratio of negative to positive samples
After setting the Sv threshold to �66 dB re 1 m�1, the

number of positive and negative samples are presented in
Table 2. Figure 11 provides the ROI classification results at
varying ratios of negative to positive samples (from 1 to
10). Higher ratios mean more negative samples, and the
model was more likely to classify a sample as negative.
Overall, the recall decreased and the precision increased as
the ratio increased. According to the F1-score results, the
optimal ratio was 6 (positive: negative = 1:6) which best
balanced recall and precision.

Prediction examples
Figure 12 provides a comparison between annotations

and predictions made by applying the proposed framework
on test examples. In example A, some annotations of
“Atlantic herring school” were missing at depth of 100–
150 m. The framework successfully identified all the Atlan-
tic herring schools including those in the missing regions,
that is, those missed by the human scrutinizer. However,
some seabed echos were misclassified as Atlantic herring
schools. In Example B, most Atlantic herring schools
appeared near the seafloor, and the predictions were consis-
tent with the annotations. In Example C, there were anno-
tations of “Noise region” near the sea surface, and
annotations of “Atlantic herring school” near the seafloor.
The framework correctly classified both cases. However, in
the region at 150 m depth, there were no annotations but
the framework identified some Atlantic herring schools
which could be some misclassifications. In Example D,
there were some annotations of “Clupeid school,” and the
framework correctly classified them as not Atlantic herring
schools.

Discussion
We explored multiview learning to develop a hybrid model

for Atlantic herring school detection. The hybrid model con-
sisted of two components: ROI detection and ROI classifica-
tion. For ROI detection, a contour detection-based method
was applied to detect Atlantic herring schools and other
objects. We allowed the Sv threshold to vary between �80
and �54 dB re 1 m�1 in the training process, where it was
included as a hyperparameter of the framework, and the
appropriate value was chosen by optimizing the F1-score on
the validation set. The model’s finding that an Sv threshold of
�66 dB showed the best performance was consistent with the
historical Sv threshold used by the NEFSC (Jech and
Michaels 2006) and provided good confidence in our
approach as this threshold is nearly universally employed by
fisheries institutions that use acoustic data for assessment of
herring as well as a few other gas-bearing species. For ROI clas-
sification, the co-training algorithm was employed because it
enables both multiview learning and utilization of unlabeled
data. Comparisons were conducted between single-view and

Fig. 10. ROI detection and classification performances on the validation set as Sv threshold varied between �80 and �54 dB re 1 m�1 with an interval
of 2 dB re 1 m�1.

Fig. 11. ROI classification performance on the validation set as the ratio
of positive to negative samples varied from 1 to 10.
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Fig. 12. Comparison of (left) annotations and (right) predictions. The colors denote different annotation classes (orange: “Atlantic herring school,” pink:
“Clupeid school,” green: “Noise region”). The date and start time are given at the bottom of each echogram, for example, D20190927-T072325 repre-
sents data collected on 27 September 2019 starting at 07:23:25 UTC. The gray portions of the echograms are below the seabed detection. Echograms
show 38-kHz Sv with a color scale of �80 to 0 dB re 1 m�1 from gray to blue to green. Sv values less than �80 dB re 1 m�1 have been excluded and
shown as the white background.
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multiview-based models, as well as supervised and semi-
supervised learning models.

The co-training model with HC and contextual features
outperformed other models in distinguishing Atlantic herring
schools from other nontarget objects. It was also shown that
the utilization of unlabeled data improves the model perfor-
mance when the training set is small. The detection and classi-
fication of Atlantic herring schools by the proposed
framework matched well with those by experts who have
many years of experience, but with subjectivity and con-
strained time. These results are important for maintaining a
consistent time series such as annual abundance estimates
included in marine resource assessments; for programs that
are resource limited and/or do not have multiple personnel
with manual scrutiny expertise; and reducing or eliminating
subjective bias by providing an explicit work flow that can be
used and revised as methods improve.

As such, the framework proposed in this work is a step
towards building a fully automatic system for Atlantic herring
school detection that is accurate, time-effective, and signifi-
cantly reduces manual efforts for the NEFSC. For example, the
NEFSC fisheries acoustics expert took on average 2 h to gener-
ate annotations for each day of data, and in total about 80 h
to generate all annotations for the 2019 acoustic data. In con-
trast, the proposed framework only took about 5 h to process
the same amount of data. Additionally, this new framework
was implemented in the open-source computing language
Python and built upon publicly available PyEcholab. As larger
amounts of acoustic data are archived and made publicly
available (Wall et al. 2016), this kind of automatic system is
highly desirable, especially those implemented using open-
source software.6

The proposed framework enables the analysis of both his-
torical and future surveys of Atlantic herring. For historical
surveys, this framework can be integrated with the existing
procedure of Atlantic herring abundance estimation. For
future surveys, this framework could be used to quickly iden-
tify Atlantic herring schools in real time.

This study aligns well with many recent studies employing
machine learning and deep learning techniques in acoustic
target identification. Previous works have used artificial neural
networks (Haralabous and Georgakarakos 1996; Reid 2000;
Cabreira et al. 2009), RF (Fallon et al. 2016; Proud et al. 2020),
CNN-based models like ResNet (Rezvanifar et al. 2019), U-Net
(Brautaset et al. 2020), and YOLO (Porto Marques et al. 2021)
in acoustic target classification or detection. A major benefit of
CNN-based models is their capability in automatic feature
extraction; however, those features are usually limited to
images. To boost the performance of CNN-based models, there
have been studies exploring new model structures that can
incorporate contextual information in classification (Chu and

Cai 2018; Ellen et al. 2019; Hu et al. 2019). To the best of our
knowledge, contextual information is still not well used in the
object detection model. This study is built upon the hybrid
model, which has a more flexible structure compared to the
end-to-end models, and can incorporate contextual informa-
tion via multiview learning. While finding the optimal object
detection model is outside the scope of this study, we plan to
explore approaches to incorporate contextual information in
the end-to-end models as well and perform a comprehensive
comparison of the hybrid and end-to-end models in
future work.

By utilizing unlabeled data in the co-training algorithm,
this study examines semi-supervised learning in the ROI classi-
fication. Semi-supervised learning methods have been shown
to be effective when there is a small number of annotations
(Zhu and Goldberg 2009). The scarcity of labeled data is a
common issue in acoustic target classification/detection since
the annotations are generated with manual scrutiny and
require a significant investment in time and expertise by the
human scrutinizer. A recent study by Choi et al. (2021)
showed the semi-supervised learning method outperformed
supervised learning methods in the task of sandeel classifica-
tion by providing better accuracy with fewer annotations. The
results from this study further demonstrate this point and
showed that unlabeled data can help improve model perfor-
mance when the labeled dataset is small.

The performance of acoustic target detection depends on
the species, school-related features, object detection method,
and the annotations. As shown in Fig. 12, there were still
some discrepancies between annotations and predictions.
These discrepancies were mainly caused by missing annota-
tions or erroneous predictions. More accurate predictions can
be achieved by (i) preparing a set of annotations with confi-
dence scores where the scores are added to the annotations
and less or uncertain annotations can be excluded from or
given less weight during model training; (ii) increasing the
variability of annotations in order to include cases that span
the full variability of the target species, such as Atlantic her-
ring schools at different depths; and (iii) adding other negative
classes of annotations, as shown in Fig. 12, some seabed echos
were misclassified as Atlantic herring schools. If annotations
for these scenarios are leveraged by the ROI classifier, classifi-
cation accuracy can be further improved.

There are limitations of this study, which can direct future
directions to explore. In this study, the framework was trained
and tested using data collected during a single-year survey in a
specific region. In our case where the assessment surveys are
conducted at the same time of year and in the same geo-
graphic region, we anticipate that these results should be
applicable to other years. However, as the waters in the Gulf
of Maine warm (Pershing et al. 2015, 2021), the timing, loca-
tions, and behavior of spawning Atlantic herring could
change, which may affect the generality of our model. In addi-
tion, the optimal Sv threshold and ratio of negative to positive

6https://github.com/ices-eg/wg_WGFAST/tree/master/Open-Source_
Effort
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samples that were optimized with the validation set may not
be directly applicable to other regions. As a future direction,
we plan to extend the framework to train and test with multi-
year survey data to evaluate its generality across years. Also,
some features used in this study are region-specific, such as
latitude and longitude. When applying the framework to dif-
ferent regions, it is worth exploring features that are not
region-specific but still effective in representing geographic
preference of the target species, such as environmental factors
like temperature and productivity (Escobar-Flores et al. 2013).

Data availability statement
The acoustic data used in this study are archived at the

NOAA National Centers for Environmental Information
(NCEI) (2020; NOAA Northeast Fisheries Science Center 2019)
and publicly accessible for free through the archive’s data por-
tal at https://www.ncei.noaa.gov/maps/water-column-sonar/
and Amazon Web Services (AWS) at https://registry.opendata.
aws/ncei-wcsd-archive/. The code repository of this study is
https://github.com/yawenzzzz/AH-school-detection.
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